Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.986
Filtrar
1.
Biointerphases ; 19(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526056

RESUMO

Bletilla striata polysaccharide (BSP) and chitosan (CS) were chemically cross-linked using oxalyl chloride to prepare a composite hemostatic sponge (BSP-CS), and the process parameters were optimized using the Box-Behnken design (BBD) with response surface methodology. To optimize the performance of the hemostatic sponge, we adjusted the ratio of independent variables, the amount of oxalyl chloride added, and the freeze-dried volume. A series of evaluations were conducted on the hemostatic applicability of BSP-CS. The characterization results revealed that BSP-CS had a stable bacteriostatic effect on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa within 72 h, and the bacteriostatic rate was above 30%. The CCK-8 cytotoxicity test demonstrated that BSP-CS had a certain effect on promoting cell proliferation of L929 cells. In the mouse tail-cutting experiment, the hemostasis time of BSP-CS was 463.0±38.16 s, shortened by 91.3 s on average compared with 554.3±34.67 s of the gauze group. The blood loss of the BSP-CS group was 28.47±3.74 mg, which was 34.7% lower than that of the control gauze group (43.6±3.83 mg). In the in vitro coagulation experiment, the in vitro coagulation index of the BSP-CS group was 97.29%±1.8%, which was reduced to 8.6% of the control group. The CT value of the BSP-CS group was 240±15 s, which was 155 s lower than that of the gauze group (355±31.22 s). All characterization results indicate that BSP-CS is an excellent hemostatic material.


Assuntos
Quitosana , Cloretos , Hemostáticos , Orchidaceae , Oxalatos , Camundongos , Animais , Hemostáticos/farmacologia , Hemostáticos/química , Quitosana/farmacologia , Quitosana/química , Hemostasia , Polissacarídeos/farmacologia , Polissacarídeos/química , Orchidaceae/química
2.
Carbohydr Polym ; 333: 121998, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494208

RESUMO

Hemostatic powders that adapt to irregularly shaped wounds, allowing for easy application and stable storage, have gained popularity for first-aid hemorrhage control. However, traditional powders often provide weak thrombus support and exhibit limited tissue adhesion, making them susceptible to dislodgment by the bloodstream. Inspired by fibrin fibers coagulation mediator, we have developed a bi-component hemostatic powder composed of positively charged quaternized chitosan (QCS) and negatively charged catechol-modified alginate (Cat-SA). Upon application to the wound, the bi-component powders (QCS/Cat-SA) rapidly absorb plasma and dissolve into chains. These chains interact with each other to form a network, which can effectively bind and entraps clustered red blood cells and platelets, ultimately leading to the creation of a durable and robust thrombus. Significantly, these interconnected polymers adhere to the injury site, offering protection against thrombus disruption caused by the bloodstream. Benefiting from these synthetic properties, QCS/Cat-SA demonstrates superior hemostatic performance compared to commercial hemostatic powders like Celox™ in both arterial injuries and non-compressible liver puncture wounds. Importantly, QCS/Cat-SA exhibits excellent antibacterial activity, cytocompatibility, and hemocompatibility. These advantages of QCS/Cat-SA, including strong blood clotting, wet tissue adherence, antibacterial activity, biosafety, ease of use, and stable storage, make it a promising hemostatic agent for emergency situations.


Assuntos
Quitosana , Hemostáticos , Trombose , Humanos , Fibrina , Adesivos/farmacologia , Coagulação Sanguínea , Hemostáticos/farmacologia , Quitosana/farmacologia , Polissacarídeos/farmacologia , Antibacterianos/farmacologia
3.
Biomaterials ; 307: 122524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513435

RESUMO

Patients diagnosed with T1a cancer undergo partial nephrectomy to remove the tumors. In the process of removing the tumors, loss of kidney volume is inevitable, and current surgical methods focus solely on hemostasis and wound closure. Here, we developed an implantable form of decellularized extracellular matrix sponge to target both hemostasis and wound healing at the lesion site. A porous form of kidney decellularized matrix was achieved by fabricating a chemically cross-linked cryogel followed by lyophilization. The prepared kidney decellularized extracellular matrix sponge (kdES) was then characterized for features relevant to a hemostasis as well as a biocompatible and degradable biomaterial. Finally, histological evaluations were made after implantation in rat kidney incision model. Both gelatin sponge and kdES displayed excellent hemocompatibility and biocompatibility. However, after a 4-week observation period, kdES exhibited more favorable wound healing results at the lesion site. This suggests a promising potential for kdES as a supportive material in facilitating wound closure during partial nephrectomy surgery. KdES not only achieved rapid hemostasis for managing renal hemorrhage that is comparable to commercial hemostatic sponges, but also demonstrated superior wound healing outcomes.


Assuntos
Hemostáticos , Neoplasias , Humanos , Ratos , Animais , Matriz Extracelular Descelularizada , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Hemostasia , Cicatrização , Rim/lesões
4.
Biomaterials ; 307: 122535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518590

RESUMO

Arrest of bleeding usually applies clotting agents to trigger coagulation procedures or adhesives to interrupt blood flow through sealing the vessel; however, the efficiency is compromised. Here, we propose a concept of integration of hemostasis and adhesion via yam mucus's microgels. The mucus microgels exhibit attractive attributes of hydrogel with uniform size and shape. Their shear-thinning, self-healing and strong adhesion make them feasible as injectable bioadhesion. Exceptionally, the blood can trigger the microgels' gelation with the outcome of super extensibility, which leads to the microgels a strong hemostatic agent. We also found a tight gel adhesive layer formed upon microgels' contacting the blood on the tissue, where there is the coagulation factor XIII triggered to form a dense three-dimensional fibrin meshwork. The generated structures show that the microgels look like hard balls in the dispersed phase into the blood-produced fibrin mesh of a soft net phase. Both phases work together for a super-extension gel. We demonstrated the microgels' fast adhesion and hemostasis in the livers and hearts of rabbits and mini pigs. The microgels also promoted wound healing with good biocompatibility and biodegradability.


Assuntos
Hemostáticos , Microgéis , Suínos , Animais , Coelhos , Hemostáticos/farmacologia , Porco Miniatura , Hemostasia , Fibrina/farmacologia , Hidrogéis/química
5.
Biomater Adv ; 159: 213834, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518390

RESUMO

The management of bleeding is an important aspect of endoscopic surgery to avoid excessive blood loss and minimize pain. In clinical settings, sprayable hemostatic particles are used for their easy delivery, adaptability to irregular shapes, and rapid hydration. However, conventional hemostatic particles present challenges associated with tissue adhesion. In a previous study, we reported tissue adhesive microparticles (C10-sa-MPs) derived from Alaska pollock gelatin modified with decyl groups (C10-sa-ApGltn) using secondary amines as linkages. The C10-sa-MPs adhere to soft tissues through a hydration mechanism. However, their application as a hemostatic agent was limited by their long hydration times, attributed to their high hydrophobicity. In this study, we present a new type microparticle, C10-am-MPs, synthesized by incorporating decanoyl group modifications into ApGltn (C10-am-ApGltn), using amide bonds as linkages. C10-am-MPs exhibited enhanced hydration characteristics compared to C10-sa-MPs, attributed to superior water absorption facilitated by amide bonds rather than secondary amines. Furthermore, C10-am-MPs demonstrated comparable tissue adhesion properties and underwater adhesion stability to C10-sa-MPs. Notably, C10-am-MPs exhibited accelerated blood coagulation in vitro compared to C10-sa-MPs. The application of C10-am-MPs in an in vivo rat liver hemorrhage model resulted in a hemostatic effect comparable to a commercially available hemostatic particle. These findings highlight the potential utility of C10-am-MPs as an effective hemostatic agent for endoscopic procedures and surgical interventions.


Assuntos
Gadiformes , Hemostáticos , Adesivos Teciduais , Ratos , Animais , Adesivos Teciduais/farmacologia , Adesivos Teciduais/uso terapêutico , Adesivos Teciduais/química , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Gelatina/farmacologia , Gelatina/química , Alaska , Aderências Teciduais , Amidas , Aminas
6.
Biomater Adv ; 159: 213838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531257

RESUMO

The process of wound healing necessitates a specific environment, thus prompting extensive research into the utilization of hydrogels for this purpose. While numerous hydrogel structures have been investigated, the discovery of a self-healing hydrogel possessing favorable biocompatibility, exceptional mechanical properties, and effective hemostatic and antibacterial performance remains uncommon. In this work, a polyvinyl alcohol (PVA) hybrid hydrogel was meticulously designed through a simple reaction, wherein CuxO anchored sepiolite was incorporated into the hydrogel. The results indicate that introduction of sepiolite greatly improves the toughness, self-healing and adhesion properties of the PVA hydrogels. CuxO nanoparticles endow the hydrogels with excellent antibacterial performance towards Staphylococcus aureus and Escherichia coli. The application of hybrid hydrogels for fast hemostasis and wound healing are verified in vitro and in vivo with rat experiments. This work thereby demonstrates an effective strategy for designing biodegradable hemostatic and wound healing materials.


Assuntos
Essências Florais , Hemostáticos , Silicatos de Magnésio , Prunella , Animais , Ratos , Hidrogéis/farmacologia , Hemostáticos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli , Cicatrização , Hemostasia
7.
Biomacromolecules ; 25(4): 2597-2606, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38483111

RESUMO

The development of highly effective hemostatic materials with high biocompatibility and outstanding performance is vital to the field of biomaterials. In this study, we develop a hemostatic fiber material that exhibits high biocompatibility and excellent performance. By incorporating polydopamine (PDA) into the alkaline treatment of silk fibroin (SF), we achieve PDA-coated SF fibers with lengths that can be controlled by the alkaline concentration. The PDA coating significantly enhances the hemostatic ability of the silk fibers and exhibits superior performance in both in vitro and ex vivo experiments. By performing animal studies involving a mouse liver puncture model and a femoral vein incision model, we demonstrate the remarkable hemostatic capability of the PDA-coated SF fibers, as evidenced by the lower blood loss compared to that of a commercial hemostat powder. These findings highlight the potential of applying a PDA-assisted alkaline treatment to SF fibers to efficiently create hemostatic fibers with controllable lengths, which would be promising candidates for clinical hemostatic applications.


Assuntos
Fibroínas , Hemostáticos , Indóis , Camundongos , Animais , Seda , Hemostáticos/farmacologia , Polímeros/farmacologia , Materiais Biocompatíveis , Fibroínas/farmacologia
8.
Biomacromolecules ; 25(4): 2574-2586, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38525818

RESUMO

Developing biocompatible injectable hydrogels with high mechanical strength and rapid strong tissue adhesion for hemostatic sealing of uncontrolled bleeding remains a prevailing challenge. Herein, we engineer an injectable and photo-cross-linkable hydrogel based on naturally derived gelatin methacrylate (GelMA) and N-hydroxysuccinimide-modified poly(γ-glutamic acid) (γPGA-NHS). The chemically dual-cross-linked hydrogel rapidly forms after UV light irradiation and covalently bonds to the underlying tissue to provide robust adhesion. We demonstrate a significantly improved hemostatic efficacy of the hydrogel using various injury models in rats compared to the commercially available fibrin glue. Notably, the hydrogel can achieve hemostasis in porcine liver and spleen incision, and femoral artery puncture models. Moreover, the hydrogel is used for sutureless repair of the liver defect in a rat model with a significantly suppressed inflammatory response, enhanced angiogenesis, and superior healing efficacy compared to fibrin glue. Together, this study offers a promising bioadhesive for treating severe bleeding and facilitating wound repair.


Assuntos
Hemostáticos , Hidrogéis , Ratos , Animais , Suínos , Hidrogéis/farmacologia , Hidrogéis/química , Adesivo Tecidual de Fibrina , Adesivos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Hemostáticos/farmacologia , Hemorragia/tratamento farmacológico , Cicatrização
9.
Biomacromolecules ; 25(4): 2462-2475, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38533630

RESUMO

With wide clinical demands, therapies for traumatic brain injury (TBI) are a major problem in surgical procedures and after major trauma. Due to the difficulty in regeneration of neurons or axons after injury, as well as the inhibition of blood vessel growth by the formation of neural scars, existing treatment measures have limited effectiveness in repairing brain tissue. Herein, the biomultifunctional hydrogels are developed for TBI treatment based on the Schiff base reaction of calcium ion (Ca2+)-cross-linked oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMCS). The obtained COCS hydrogel exhibits excellent adhesion to wet tissues, self-repair capability, and antimicrobial properties. What's particularly interesting is that the addition of Ca2+ increases the hydrogel's extensibility, enhancing its hemostatic capabilities. Biological assessments indicate that the COCS hydrogel demonstrates excellent biocompatibility, hemostatic properties, and the ability to promote arterial vessel repair. Importantly, the COCS hydrogel promotes the growth of cerebral microvessels by upregulating CD31, accelerates the proliferation of astrocytes, enhances the expression of GFAP, and stimulates the expression of neuron-specific markers such as NEUN and ß-tubulin. All of these findings highlight that the strongly adhesive, self-healing, hemostatic hydrogel shows great potential for the repair of traumatic brain injury and other tissue repair therapy.


Assuntos
Lesões Encefálicas Traumáticas , Quitosana , Hemostáticos , Humanos , Hemostáticos/farmacologia , Hidrogéis/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Encéfalo , Alginatos/farmacologia , Antibacterianos
10.
Int J Biol Macromol ; 264(Pt 2): 130771, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467220

RESUMO

Development of the efficient hemostatic materials is an essential requirement for the management of hemorrhage caused by the emergency situations to avert most of the casualties. Such injuries require the use of external hemostats to facilitate the immediate blood clotting. A variety of commercially available hemostats are present in the market but most of them are associated with limitations such as exothermic reactions, low biocompatibility, and painful removal. Thus, fabrication of an ideal hemostatic composition for rapid blood clot formation, biocompatibility, and antimicrobial nature presents a real challenge to the bioengineers. Benefiting from their tunable fabrication properties, alginate-based hemostats are gaining importance due to their excellent biocompatibility, with >85 % cell viability, high absorption capacity exceeding 500 %, and cost-effectiveness. Furthermore, studies have estimated that wounds treated with sodium alginate exhibited a blood loss of 0.40 ± 0.05 mL, compared to the control group with 1.15 ± 0.13 mL, indicating its inherent hemostatic activity. This serves as a solid foundation for designing future hemostatic materials. Nevertheless, various combinations have been explored to further enhance the hemostatic potential of sodium alginate. In this review, we have discussed the possible role of alginate based composite hemostats incorporated with different hemostatic agents, such as inorganic materials, polymers, biological agents, herbal agents, and synthetic drugs. This article outlines the challenges which need to be addressed before the clinical trials and give an overview of the future research directions.


Assuntos
Hemostáticos , Trombose , Humanos , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Alginatos/farmacologia , Hemostasia , Coagulação Sanguínea , Hemorragia/tratamento farmacológico
11.
Carbohydr Polym ; 334: 121934, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553248

RESUMO

The development of highly effective chitosan-based hemostatic materials that can be utilized for deep wound hemostasis remains a considerable challenge. In this study, a hemostatic antibacterial chitosan/N-hydroxyethyl acrylamide (NHEMAA)/Ti3C2Tx (CSNT) composite cryogel was facilely prepared through the physical interactions between the three components and the spontaneous condensation of NHEMAA. Because of the formation of strong crosslinked network, the CSNT cryogel showed a developed pore structure (~ 99.07 %) and superfast water/blood-triggered shape recovery, enabling it to fill the wound after contacting the blood. Its capillary effect, amino groups, negative charges, and affinity with lipid collectively induced rapid hemostasis, which was confirmed by in vitro and in vivo analysis. In addition, CSNT cryogel showed excellent photothermal antibacterial activities, high biosafety, and in vivo wound healing ability. Furthermore, the presence of chitosan effectively prevented the oxidation of MXene, thus enabling the long-term storage of the MXene-reinforced cryogel. Thus, our hemostatic cryogel demonstrates promising potential for clinical application and commercialization, as it combines high resilience, rapid hemostasis, efficient sterilization, long-term storage, and easy mass production.


Assuntos
Quitosana , Hemostáticos , Nitritos , Elementos de Transição , Humanos , Acrilamida , Antibacterianos/farmacologia , Criogéis , Hemostasia , Hemostáticos/farmacologia
12.
J Mater Chem B ; 12(14): 3453-3468, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38505998

RESUMO

In this work, we have demonstrated agar and oxidized bacterial cellulose cryogels as a potential hemostatic dressing material. TEMPO-oxidized bacterial cellulose (OBC) was incorporated into the agar matrix, improving its mechanical and hemostatic properties. The oxidation of bacterial cellulose (BC) was evidenced by chemical characterization studies, confirming the presence of carboxyl groups. The in vitro blood clotting test conducted on agar/OBC composite cryogels demonstrated complete blood clotting within 90 seconds, indicating their excellent hemostatic efficacy. The cryogels exhibited superabsorbent properties with a swelling degree of 4200%, enabling them to absorb large amounts of blood. Moreover, the compressive strength of the composite cryogels was appreciably improved compared to pure agar, resulting in a more stable physical structure. The platelet adhesion test proved the significant ability of the composite cryogels to adhere to and aggregate platelets. Hemocompatibility and cytocompatibility tests have verified the safety of these cryogels for hemostatic applications. Finally, the material exhibited remarkable in vivo hemostatic performance, achieving clotting times of 64 seconds and 35 seconds when tested in the rat tail amputation model and the liver puncture model, respectively. The experiment results were compared with those of commercial hemostat, Axiostat, and Surgispon, affirming the potential of agar/OBC composite cryogel as a hemostatic dressing material.


Assuntos
Celulose Oxidada , Hemostáticos , Ratos , Animais , Hemostáticos/farmacologia , Hemostáticos/química , Celulose Oxidada/farmacologia , Criogéis/farmacologia , Criogéis/química , Ágar , Celulose/farmacologia
13.
ACS Appl Mater Interfaces ; 16(10): 12321-12331, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38431875

RESUMO

Apart from single hemostasis, antibacterial and other functionalities are also desirable for hemostatic materials to meet clinical needs. Cationic materials have attracted great interest for antibacterial/hemostatic applications, and it is still desirable to explore rational structure design to address the challenges in balanced hemostatic/antibacterial/biocompatible properties. In this work, a series of cationic microspheres (QMS) were prepared by the facile surface modification of microporous starch microspheres with a cationic tannic acid derivate, the coating contents of which were adopted for the first optimization of surface structure and property. Thermoresponsive gels with embedded QMS (F-QMS) were further prepared by mixing a neutral thermosensitive polymer and QMS for second structure/function optimization through different QMS and loading contents. In vitro and in vivo results confirmed that the coating content plays a crucial role in the hemostatic/antibacterial/biocompatible properties of QMS, but varied coating contents of QMS only lead to a classical imperfect performance of cationic materials. Inspiringly, the F-QMS-4 gel with an optimal loading content of QMS4 (with the highest coating content) achieved a superior balanced in vitro hemostatic/antibacterial/biocompatible properties, the mechanism of which was revealed as the second regulation of cell-material/protein-material interactions. Moreover, the optimal F-QMS-4 gel exhibited a high hemostatic performance in a femoral artery injury model accompanied by the easy on-demand removal for wound healing endowed by the thermoresponsive transformation. The present work offers a promising approach for the rational design and facile preparation of cationic materials with balanced hemostatic/antibacterial/biocompatible properties.


Assuntos
Hemostáticos , Polifenóis , Hemostáticos/farmacologia , Hemostáticos/química , Microesferas , Hemostasia , Antibacterianos/farmacologia , Antibacterianos/química , Géis/farmacologia , Amido/química
14.
Int J Biol Macromol ; 265(Pt 2): 131060, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521317

RESUMO

Various types of hemostatic agents are used to manage bleeding in surgery. Many such agents are animal products, which carry the risk of secondary infection. The aim of this study is to develop a novel hemostatic agent from a non-animal source that quickly stops bleeding, is easy to use, and has no risk of infection. In this study, we synthesized calcium ion-crosslinked sodium alginate (Alg-Na/Ca) by partial substitution of Ca ions for Na ions in sodium alginate. We prepared 12 kinds of Alg-Na/Ca powders with different Ca mass ratios, molecular weights, M/G ratios and particle size distributions and measured their swelling ratio and the burst pressure generated. We found that Alg-Na/Ca began to swell immediately after contact with saline, especially Alg-Na/Ca at Ca mass ratios of 74.1-77.0 % showed a high swelling ratio after 2 min and a high burst pressure, over 200 % and 500 mmHg respectively. Also, there is a correlation between the swelling ratio after 2 min and the burst pressure. Our results suggest that, by optimizing the composition conditions, Alg-Na/Ca may be an effective hemostatic agent that could act as a tamponade by absorbing and swelling at a bleeding site to quickly achieve primary hemostasis.


Assuntos
Hemostáticos , Animais , Hemostáticos/farmacologia , Cálcio , Hemostasia , Alginatos , Íons
15.
Int J Biol Macromol ; 262(Pt 2): 130094, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350583

RESUMO

This study used a unique approach by developing a bilayer system that can simultaneously accomplish non-adhesion, hemostatic, and tissue regenerative properties. In this system, agarose was used as a carrier material, with an agarose-TEMPO-oxidized cellulose nanofiber (TOCN), (AT) layer acting as a non-adhesion layer and an Agarose-Extracellular matrix, (AE) layer acting as a tissue regenerative layer. Thrombin was loaded on the AE layer as an initiator of the healing process, by hemostasis. AT 1:4 showed 79.3 % and AE 1:4 showed 84.66 % cell viability initially confirming the biocompatible nature of the layers. The AE layer showed cell attachment and proliferation on its surface whereas on the AT layer, cells are visible but no attachment was observed. Furthermore, in vivo analysis was conducted. The non-adhesive layer was grafted between the cecum and peritoneal wall which showed that (AT 1:4) displayed remarkable non-adhesion properties as compared to a commercial product and the non-treated group. Hemostasis and tissue regeneration ability were evaluated using rat liver models. The bleeding time of AE 1:4TH was recorded as 160 s and the blood loss was 5.6 g. The results showed that (AE 1:4) displayed effective regeneration ability in the liver model after two weeks.


Assuntos
Celulose Oxidada , Hemostáticos , Nanofibras , Ratos , Animais , Hemostáticos/farmacologia , Sefarose , Hidrogéis , Hemostasia , Aderências Teciduais , Matriz Extracelular
16.
Int J Biol Macromol ; 262(Pt 2): 130084, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38350584

RESUMO

Accidental bleeding is an unavoidable problem in daily life. To avoid the risk of excessive blood loss, it is urgent to design a functional material that can quickly stop bleeding. In this study, an efficient wound dressing for hemostasis was investigated. Based on the characteristics that Ca2+ and fish skin collagen (FSC) could activate the coagulation mechanism, hemostatic cotton was prepared by solvent replacement method using CaCl2, FSC, soluble starch (SS), and polyvinyl alcohol (PVA) as raw materials. The cytotoxicity test showed the Ca2+PVA/FSC-SS hemostatic cottons had good biocompatibility. The activated partial thromboplastin time (APTT) of Ca2+PVA/FSC-SS(4) was 35.34 s, which was 22.07 s faster than that of PVA/FSC-SS, indicating Ca2+PVA/FSC-SS mediated the endogenous coagulation system. In vitro coagulation test, Ca2+PVA/FSC-SS(4) could stop bleeding rapidly within 39.60 ± 5.16 s, and the ability of wound healing was higher than commercial product (Celox). This study developed a rapid procoagulant and hemostatic material, which had a promising application in a variety of environments.


Assuntos
Hemostáticos , Animais , Hemostáticos/farmacologia , Amido/farmacologia , Hemostasia , Coagulação Sanguínea , Colágeno , Álcool de Polivinil , Hemorragia , Etanol , Antibacterianos
17.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396783

RESUMO

Wound management practices have made significant advancements, yet the search for improved antiseptics persists. In our pursuit of solutions that not only prevent infections but also address broader aspects of wound care, we investigated the impact of integrating trimethyl chitosan (TMC) into a widely used poly(vinylpyrrolidone)-iodine gel (PVP-I gel). Our study assessed the antimicrobial efficacy of the PVP gel with TMC against Escherichia coli, Staphylococcus aureus, multidrug-resistant S. aureus MRSA, and Candida albicans. Additionally, we compared hemostatic effects using a liver puncture bleeding model and evaluated wound healing through histological sections from full-thickness dermal wounds in rats. The results indicate that incorporating TMC into the commercially available PVP-I gel did not compromise its antimicrobial activity. The incorporation of TMC into the PVP-I gel markedly improves its hemostatic activity. The regular application of the PVP-I gel with TMC resulted in an increased blood vessel count in the wound bed and facilitated the development of thicker fibrous tissue with a regenerated epidermal layer. These findings suggest that TMC contributes not only to antimicrobial activity but also to the intricate processes of tissue regeneration. In conclusion, incorporating TMC proves beneficial, making it a valuable additive to commercially available antiseptic agents.


Assuntos
Anti-Infecciosos Locais , Anti-Infecciosos , Quitosana , Hemostáticos , Iodo , Staphylococcus aureus Resistente à Meticilina , Ratos , Animais , Anti-Infecciosos Locais/farmacologia , Povidona-Iodo/farmacologia , Quitosana/farmacologia , Hemostáticos/farmacologia , Anti-Infecciosos/farmacologia
18.
Bioconjug Chem ; 35(2): 203-213, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38343092

RESUMO

The field of clinical surgery frequently encounters challenges related to atypical wound tissue healing, resulting in the development of persistent chronic wounds or aesthetically displeasing scar tissue. The use of wound dressings crafted from mussel adhesive proteins and hyaluronic acid has demonstrated the potential in mitigating these undesirable outcomes. However, the synergistic effects of these two biomaterials remain underexplored. In this study, we have engineered a versatile, degradable, and biocompatible dressing that comprises recombinant 3,4-dihydroxyphenylalanine (DOPA)-modified mussel adhesive proteins and maleimide-functionalized hyaluronic acid. We have successfully fabricated this biocompatible dressing and conducted comprehensive experimental assessments to confirm its hemostatic, antibacterial, and biocompatible characteristics. Importantly, this dressing exclusively incorporates biologically derived materials characterized by low toxicity and minimal immunogenicity, thus holding immense promise for clinical applications in the field of wound healing.


Assuntos
Hemostáticos , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Cisteína , Ácido Hialurônico , Antibacterianos/farmacologia , Bandagens , Maleimidas
19.
Biomater Sci ; 12(7): 1883-1897, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416049

RESUMO

Effective hemostatic materials have been in demand for rapid pre-hospital hemostasis in emergency situations, which can significantly reduce accidental deaths. The development of emergency hemostatic materials with rapid hemostasis, biosafety, and economical preparation is a great challenge. In this study, Ca(OH)2-complexed diatom powder hemostatic particles (Ca(OH)2-Php) were prepared based on a one-pot reaction by directly mixing various raw materials and by rotary granulation. High-temperature calcination was able to carbonate and consume the organic matter in the hemostatic particles. The crosslinked hydrogen bonds in those particles were converted to silica-oxygen bonds, the particles became more stable, and the porous structure of diatom biosilica (DBs) was exposed. Ca(OH)2-Php has high porosity, can quickly adsorb the water in blood (water absorption: 75.85 ± 6.93%), and exhibits rapid hemostasis capacity (clotting time was shortened by 43% compared with that of the control group), good biocompatibility (hemolysis rate <7%, no cytotoxicity), and simplicity of handling (conveniently debride, no residues, no tissue inflammation). This study provides a new idea for the preparation of emergency hemostatic materials, and Ca(OH)2-Php prepared by one-pot reaction has various high-quality characteristics including rapid hemostasis, wide applicability, economical preparation, and potential for large-scale production.


Assuntos
Diatomáceas , Hemostáticos , Hemostáticos/farmacologia , Hemostáticos/química , Coagulação Sanguínea , Hemostasia , Água/química
20.
ACS Appl Bio Mater ; 7(3): 1362-1380, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38373393

RESUMO

Untimely or improper treatment of traumatic bleeding may cause secondary injuries and even death. The traditional hemostatic modes can no longer meet requirements of coping with complicated bleeding emergencies. With scientific and technological advancements, a variety of topical hemostatic materials have been investigated involving inorganic, biological, polysaccharide, and carbon-based hemostatic materials. These materials have their respective merits and defects. In this work, the application and mechanism of the major hemostatic materials, especially some hemostatic nanomaterials with excellent adhesion, good biocompatibility, low toxicity, and high adsorption capacity, are summarized. In the future, it is the prospect to develop multifunctional hemostatic materials with hemostasis and antibacterial and anti-inflammatory properties for promoting wound healing.


Assuntos
Hemostáticos , Humanos , Hemostáticos/farmacologia , Hemostáticos/uso terapêutico , Coagulação Sanguínea , Hemostasia , Hemorragia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...